5 Análise dos Resultados

Neste capítulo os resultados dos testes experimentais são discutidos e comparados com os resultados teóricos.

5.1.

Cálculo de Momento de Inércia de uma Seção Mista

5.1.1.

Momento Positivo

Para calcular o momento de inércia da seção mista, é necessária a transformação da seção de concreto em aço [9]. Neste caso, para fazer essa transformação a relação entre o módulo de elasticidade do concreto com o do aço é utilizada. A Figura 5.1 apresenta um exemplo (teste da laje BMP–1) da seção transversal da laje mista para o momento positivo.

Figura 5.1 – Seção transversal da laje mista para momento positivo.

A seguir será apresentado um exemplo do cálculo do momento de inércia da seção mista do teste da laje BMP-1.

93

Sendo:

$$\begin{split} &\mathsf{E}_{\mathsf{a}} = \mathsf{198.863,40} \; \mathsf{MPa}; \\ &\mathsf{E}_{\mathsf{c}} = 4.500 * \sqrt{F_{ck}} \; \; \mathsf{MPa} \; [\mathsf{10}]; \\ &F_{ck} = \mathsf{22,1} \; \mathsf{MPa}; \end{split}$$

em que:

 E_a é o módulo de elasticidade medido do aço; E_c é o módulo de elasticidade medido do concreto; F_{ck} é a resistência característica do concreto;

O fator de transformação (concreto/aço) pode ser dado pela Equação 5.1.

$$n = \frac{E_{aço}}{E_{concreto}}$$
(5.1)
$$n = \frac{198.863,40}{21.155}$$

$$n = 9,40$$

A Tabela 5.1 apresenta os dados da seção mista após a conversão, utilizando o fator *n*, para o teste da laje mista BMP–1.

Seção	Área (mm²)	y (mm)	A*y (mm³)	A*y² (mm⁴)	I _{local} (mm ⁴)
Concreto	1.474,74	37,5	55.302,75	2.073.853,12	615.742,67
Aço	801,36	22,21	17.798,20	395.298,14	606.267,83
Total	2.276,1		73.100,95	2.469.151,26	1.222.010,5

Tabela 5.1 – Dados da seção mista para momento positivo.

Utilizando os dados da Tabela 5.1 e as Equações 5.2 e 5.3, foi obtido o momento de inércia de uma seção mista para o momento positivo.

$$Y_{c} = \frac{\sum A^{*} y}{\sum A}$$

$$Y_{c} = 32,12 \text{ mm}$$
(5.2)

$$I_{sm} = \sum A * y^{2} + \sum I_{local} - \sum A * Y^{2}_{c}$$
(5.3)
$$I_{sm} = 1343395,98 \text{ mm}^{4}$$

5.1.2.

Momento Negativo

O momento negativo foi calculado para laje mista BMN–1. O procedimento do calculo é o mesmo apresentado na seção 5.1.1, com um $F_{ck} = 22,8$ MPa. A Figura 5.2 apresenta a seção transversal da laje mista adotada como exemplo.

Figura 5.2 – Seção transversal da laje mista para momento negativo.

Utilizando a Equação 5.1 o fator de transformação encontrado foi de n = 9,25. A Tabela 5.2 apresenta os dados da seção mista convertido pelo fator n para o teste da laje mista BMN–1.

Seção	Área (mm²)	y (mm)	A*y (mm³)	A*y² (mm⁴)	I _{local} (mm ⁴)
Concreto	1498,66	37,5	56199,75	2107490,60	625798,02
Aço	801,36	52,79	42303,79	2233217,30	606267,83
Total	2672,16		98503,54	4340707,90	1232065,90

Tabela 5.2 – Dados da seção mista para momento negativo.

Utilizando os dados da Tabela 5.2 e as Equações 5.2 e 5.3, foi obtido o momento de inércia de uma seção mista para o momento negativo.

 $Y_c = 42,83 \text{ mm}$ $I_{sm} = 1354137,30 \text{ mm}^4$

5.1.3.

Momento Positivo para Três Bandejas

O momento positivo para o conjunto formado por três bandejas foi calculado para laje mista BMP–6. O procedimento do calculo é similar ao apresentado na Seção 5.1.1, com um $F_{ck} = 21,2$ MPa. A Figura 5.3 apresenta a seção transversal da laje mista adotada como exemplo.

Figura 5.3 – Seção transversal da laje mista composta de três bandejas.

Utilizando a Equação 5.1, o fator de transformação encontrado foi de n = 9,6. A Tabela 5.3 apresenta os dados da seção mista convertido pelo fator n para o teste da laje mista BMP–6.

Seção	Área (mm²)) y (mm)	A*y (mm³)	A*y ² (mm ⁴)	I _{local} (mm⁴)
Concreto	9665,40	127,41	1231468,61	156901416,11	3850764,52
Aço	2404,08	71,99	173069,71	12459289,08	9456130,44
Total	12296,18		1404538,32	169360705,19	13397524,56

Tabela 5.3 – Dados da seção mista composta de três bandejas.

Utilizando os dados da Tabela 5.3 e as Equações 5.2 e 5.3, foi obtido o momento de inércia de uma seção mista para o momento positivo com três bandejas.

 $Y_c = 114,22 \text{ mm}$ $I_{sm} = 19.219.967,80 \text{ mm}^4$

Seguindo o procedimento de cálculo apresentado nas Seções 5.1.1, 5.1.2 e 5.1.3, a Tabela 5.4 apresenta todos os valores dos momentos de inércia calculados para as lajes mistas testadas nesta dissertação.

Teste	I _{sm} (mm⁴)
BMP-1	1343395,98
BMP-2	1473796,04
BMP-3	1543923,63
BMP–4	1541449,63
BMP–5	1560654,88
BMP–6	19219967,80
BMP–7	21177782,20
BMN-1	1354137,30
BMN-2	1518900,93
BMN-3	1518900,93

Tabela 5.4 – Momentos de inércia calculados.

5.2

Cálculo da Resistência de Projeto das Lajes Mistas

Para a avaliação da resistência de projeto das lajes mistas segundo os critérios da norma NBR – 8800 [12], adota-se a hipótese de resistência à tração nula para o concreto de enchimento das bandejas.

Determina-se interativamente a posição da linha neutra e através de diagramas de bloco de tensões de plastificação e respectivos braços de alavanca, determina-se o momento de plastificação da seção mista.

5.2.1 Cálculo da Resistência de Projeto para Momento Positivo

O momento resistente positivo para uma bandeja foi calculado para laje mista BMP-1. A Figura 5.4 apresenta a seção transversal da laje mista adotada como exemplo.

Figura 5.4 – Seção transversal da laje mista para momento positivo.

Inicialmente foi determinada a linha neutra. Para o teste da laje BMP-1, a linha neutra estava a 32,5 milímetros em relação a parte inferior da laje, como mostra a Figura 5.4.

Com a posição da linha neutra definida, foram calculadas as forças localizadas abaixo e acima da linha neutra. É importante ressaltar a necessidade de um equilíbrio entre as forças abaixo e acima da linha neutra. Para calcular essas forças utilizamos as Equações 5.4 e 5.5.

$$F_{aco} = \phi^* \text{ Area }^* F_y$$

$$F_{concreto} = \phi_c^* 0.85 * \text{ Area }^* F_{ck}$$
(5.4)
(5.5)

em que:

- ϕ_c coeficiente de resistência do concreto; [11]
- F_v-tensão de escoamento do aço;
- F_{ck} resistência característica do concreto;

F_{aço} – fator de resistência do aço;

F_{concreto} – fator de resistência compressiva do concreto efetivo.

Três situações foram analisadas para o cálculo do momento:

- para a primeira situação adota-se um F_{ck} = 20 MPa, um F_y = 250 MPa, um φ= 0,9 e um φ_c= 0,6. A idéia inicial era ter esta configuração como padrão;
- para a segunda situação adota-se um F_{ck} que apresentava variação para cada tipo de laje, um F_y = 333.2 MPa, um φ= 0,9 [10] e um φ_c= 0,6 [10]. Os valores de F_{ck} e F_y foram obtidos dos testes;
- para a última situação, adota-se um F_{ck} que apresentava variação para cada tipo de laje, um F_y = 333,2 MPa, um φ= 1,0 e um φ_c= 1,0. Estes últimos correspondiam a valores para testes experimentais.

O procedimento para o cálculo do momento resistente foi o mesmo para as três situações apresentadas. Assim, o cálculo a ser demonstrado é apenas o da segunda situação.

Os seguintes dados foram utilizados nos cálculos:

 $\phi = 0.9$ $\phi_c = 0.6$ $F_{ck} = 22.1$ MPa; $F_y = 333.2$ MPa; Linha Neutra (LN) = 32.5 mm; Largura (perfil) = 200 mm; Altura (perfil) = 75 mm; Espessura (perfil) = 2.1 mm;

Utilizando-se as Equações 5.4 e 5.5, as forças abaixo e acima da linha neutra são calculadas como mostram as Tabelas 5.5 e 5.6, respectivamente.

	Aço	LN (mm)
Forças abaixo da linha	120,5	32,5
neutra	35,64	32,5
(kN)	6,23	32,5
	Força Total = 162,52 kN	

Tabela 5.5 – Forças abaixo da linha neutra.

	Aço	Concreto	LN (mm)
Forças acima da	48,23	89,15	32,5
linha neutra	19,90		32,5
(kN)	6,23		32,5
	Força Total = 163,51 kN		

Tabela 5.6 – Forças acima da linha neutra.

Como as forças totais calculadas acima e abaixo da linha neutra são aproximadamente iguais, foi possível então calcular os braços de alavanca para cada força apresentada nas Tabelas 5.5 e 5.6. Os valores obtidos são apresentados na Figura 5.4.

Os braços de alavanca são valores medidos do centróide até a linha neutra de uma região da laje mista. Por exemplo, a região entre A e B na Figura 5.4 é a região na qual será calculado o braço de alavanca. Esta região possui uma espessura de 2,1 mm e, conseqüentemente, um centróide de 1,05 mm. Para calcular do braço de alavanca nesta região, é preciso subtrair a linha neutra do centróide.

Seguindo esta linha de raciocínio, as Tabelas 5.7 e 5.8 apresentam os valores dos braços de alavanca para as forças abaixo e acima da linha neutra, respectivamente.

	Aço	Braço de Alavanca	LN
		(mm)	(mm)
Forças abaixo da	120,5	31,45	32,5
linha neutra	35,64	14,15	32,5
(kN)	6,23	29,63	32,5

Tabela 5.7 – Braços de alavanca para forças abaixo da linha neutra.

	Aço	Braço de Alavanca	LN (mm)
		(mm)	
Forças acima	48,23	19,15	32,5
da linha neutra	19,90	41,45	32,5
(kN)	6,23	39,63	32,5
	Concreto		
	89,15	20,2	32,5

Tabela 5.8 – Braços de alavanca para forças acima da linha neutra.

O momento resistente é calculado pelo somatório do produto das forças pelos braços de alavanca, como mostra a Equação 5.6. Utilizando as Tabelas 5.5-5.8 e a Equação 5.6, o momento resistente foi determinado.

$$M_{r} = \sum_{i=1}^{n} E_{i}F_{i} + \sum_{j=1}^{m} e_{j}f_{j}$$

$$M_{r} = 8,27 \, kN \times m$$
(5.6)

em que:

- F forças abaixo da linha neutra;
- f forças acima da linha neutra;
- E braços de alavanca para forças abaixo da linha neutra;
- e braços de alavanca para forças acima da linha neutra;
- n número de forças abaixo da linha neutra;
- m número de forças acima da linha neutra;

5.2.2

Cálculo da Resistência de Projeto para Momento Negativo

O momento resistente negativo para uma bandeja foi calculado para laje mista BMN–2. A Figura 5.5 apresenta a seção transversal da laje mista adotada como exemplo.

Figura 5.5 – Seção transversal da laje mista para momento negativo.

Novamente, foi determinada a linha neutra. Para o teste da laje BMN–2, a linha neutra estava a 63 milímetros em relação a parte inferior da laje, como mostra a Figura 5.5.

Com a posição da linha neutra definida, foram calculadas as forças localizadas abaixo e acima da linha neutra. É importante ressaltar a necessidade de um equilíbrio entre as forças abaixo e acima desta linha neutra. Para calcular essas forças, foram utilizadas as Equações 5.4 e 5.5 já apresentadas na seção anterior.

Os seguintes dados foram utilizados nos cálculos:

 $\phi = 0.9$ $\phi_c = 0.6$ $F_{ck} = 35.6 \text{ MPa};$ $F_y = 333.2 \text{ MPa};$ LN = 63 mm;Largura (perfil) = 200 mm; Altura (perfil) = 75 mm; Espessura (perfil) = 2.1 mm;

Utilizando as Equações 5.4 e 5.5, as forças abaixo e acima da linha neutra foram calculadas, como mostram as Tabelas 5.9 e 5.10, respectivamente.

	Aço	LN (mm)
Forças abaixo da	19,9	63
linha neutra	74,05	63
(kN)	6,23	63
	67,86	63
	Força Total = 168,04 kN	

Tabela 5.9 – Forças abaixo da linha neutra.

	Aço	Concreto	LN (mm)
Forças acima da	9,82	35,19	63
linha neutra	120,65		63
(kN)	6,23		63
	Força Total = 171,89 kN		

Tabela 5.10 – Forças acima da linha neutra.

Como as forças totais calculadas acima e abaixo da linha neutra são aproximadamente iguais, podemos então calcular os braços de alavanca para cada força das Tabelas 5.9 e 5.10. Os braços de alavanca são apresentados na Figura 5.5.

Seguindo a mesma linha de raciocínio para o cálculo dos braços de alavanca da Seção 5.2.1, as Tabelas 5.11 e 5.12 apresentam os valores dos braços de alavanca para as forças abaixo e acima da linha neutra, respectivamente.

	Aço	Braço de Alavanca	
		(mm)	(mm)
Forças abaixo	19,9	61,95	63
da linha neutra	74,05	25,5	63
(kN)	6,23	60,13	63
	67,86	30,71	63

Tabela 5.11 – Braços de alavanca para forças abaixo da linha neutra.

	Aço	Braço de Alavanca	LN (mm)
		(mm)	
Forças acima da	9,82	3,9	63
linha neutra	120,65	10,95	63
(kN)	6,23	9,13	63
	Concreto		
	35,19	4,95	63

Tabela 5.12 – Braços de alavanca para forças acima da linha neutra.

O momento resistente é calculado pelo somatório do produto das forças pelos braços de alavanca, como foi mostrado pela Equação 5.6. Utilizando as Tabelas 5.9 a 5.12 e a Equação 5.6, o momento resistente foi determinado.

 $M_r = 7,45 \, kN \times m$

5.2.3

Cálculo da Resistência de Projeto para Momento Positivo para três bandejas

O momento resistente positivo para três bandejas foi calculado para a laje mista BMP–6. A Figura 5.6 apresenta a seção transversal da laje mista adotada como exemplo.

Figura 5.6 – Seção transversal da laje mista composta de três bandejas.

Primeiramente foi determinada a linha neutra. Para o teste da laje BMP–6, a linha neutra estava a 124,5 milímetros em relação a parte inferior da laje, como mostra a Figura 5.6.

Com a posição da linha neutra definida, foram calculadas as forças localizadas abaixo e acima da linha neutra. Novamente é importante lembrar a necessidade de um equilíbrio entre as forças abaixo e acima da linha neutra. Para calcular essas forças, foram utilizadas as Equações 5.4 e 5.5 já apresentadas na Seção 5.2.1.

Os seguintes dados foram utilizados nos cálculos:

 $\phi = 0.9$ $\phi_c = 0.6$ $F_{ck} = 21.3$ MPa; $F_y = 333.2$ MPa; LN = 124.5 mm; Largura (perfil) = 580 mm; Altura (laje) = 215 mm; Espessura (perfil) = 2.1 mm;

Utilizando as Equações 5.4 e 5.5 apresentadas na Seção 5.2.1, as forças abaixo e acima da linha neutra foram calculadas como mostram as Tabelas 5.13 e 5.14, respectivamente.

	Aço	LN (mm)
Forças abaixo da	120,70	124,5
linha neutra	6,23	124,5
(kN)	67,86	124,5
	83,88	124,5
	6,23	124,5
	19,9	124,5
	12,46	124,5
	114,11	124,5
	214,4	124,5
	Força Total = 672,64 kN	

Tabela 5.13 – Forças abaixo da linha neutra.

	Aço	Concreto	LN (mm)
Forças acima da	53,65	108,47	124,5
linha neutra	12,46	49,86	124,5
(kN)	39,8	409,53	124,5
	Força Total = 673,77 kN		

Tabela 5.14 – Forças acima da linha neutra.

Como as forças totais calculadas acima e abaixo da linha neutra são aproximadamente iguais, podemos então calcular os braços de alavanca para cada força das Tabelas 5.13 e 5.14. Os braços de alavanca são apresentados na Figura 5.6.

Seguindo a mesma linha de raciocínio para o cálculo dos braços de alavanca da Seção 5.2.1, as Tabelas 5.15 e 5.16 apresentam os valores dos braços de alavanca para as forças abaixo e acima da linha neutra, respectivamente.

	Aço	Braço de Alavanca	LN
		(mm)	(mm)
Forças abaixo da	120,70	123,45	124,5
linha neutra	6,23	121,63	124,5
(kN)	67,86	92,4	124,5
	83,88	87	124,5
	6,23	52,37	124,5
	19,9	50,55	124,5
	12,46	46,63	124,5
	114,11	22,65	124,5
	214,4	48,45	124,5

Tabela 5.15 – Braços de alavanca para forças abaixo da linha neutra.

	Aço	Braço de Alavanca	LN (mm)
		(mm)	
Forças acima	53,65	10,65	124,5
da linha neutra	12,46	22,63	124,5
(kN)	39,8	24,45	124,5
	Concreto		
	108,47	12,75	124,5
	49,86	12,75	124,5
	409,53	58	124,5

Tabela 5.16 – Braços de alavanca para forças acima da linha neutra.

O momento resistente é calculado pelo somatório do produto das forças pelos braços de alavanca, como foi mostrado na Seção 5.2.1 pela Equação 5.6. Utilizando as Tabelas 5.13-5.16 e a Equação 5.6, o momento resistente foi determinado.

 $M_r = 72,98 \, kN \times m$

Na Tabela 5.17 são mostrados todos os momentos resistentes de cada teste para a primeira situação (Seção 5.2.1), na qual foram adotados os seguintes valores: $F_{ck} = 20$ MPa, $F_y = 250$ MPa, $\phi = 0.9$ e $\phi_c = 0.6$. Esta tabela também apresenta os momentos medidos nos testes.

Teste	F _{ck}	LN	Momento	Momento	Carga de	ρ
	(MPa)	(mm)	Previsto	Medido	serviço	
			(kN*m)	(kN*m)	medida	
					(kg / m²)	
BMP-1	20	36	6,45	9,17	1.190	1,42
BMP-2	20	36	6,45	9,37	1.220	1,45
BMP-3	20	36	6,45	12,94	1.230	2,00
BMP-4	20	36	6,45	12,57	1.636	1,94
BMP-5	20	36	6,45	12,89	1.678	1,99
BMP-6	20	124,5	46,29	103,16	4.632	2,22
BMP-7	20	124,5	46,29	112,52	5.052	2,43
BMN-1	20	73	3,72	8,47	1.102	2,27
BMN–2	20	58	6,02	10,70	1.520	1,77
BMN–3	20	58	6,02	10,59	1.504	1,75

Tabela 5.17– Resultado dos momentos para a primeira situação.

O valor do parâmetro ρ é a relação entre o momento resistente medido e o momento resistente previsto.

Como pode ser observado na Tabela 5.17, existem valores de ρ em que a relação entre momento resistente medido e o momento resistente previsto é mais que o dobro. Uma das justificativas para este fato é que o F_{ck} e o F_y utilizados para o cálculo teórico não correspondiam com o valor real utilizado nas medidas. Uma outra justificativa está relacionada com a utilização dos séptos, que aumentam a resistência do concreto (fenômeno de confinamento) e que no calculo teórico não é possível levar em consideração.

Na Tabela 5.18 são mostrados todos os momentos resistentes de cada teste para a segunda situação (Seção 5.2.1), na qual foram adotados os seguintes valores: F_{ck} , que variava para cada tipo de laje, $F_y = 333,2$ MPa, $\phi = 0,9$ e $\phi_c = 0,6$. Esta tabela também apresenta os momentos medidos nos testes.

Teste	F _{ck}	LN	Momento	Momento	Carga Última	ρ
	(MPa)	(mm)	Previsto	Medido	(kg / m²)	
			(kN*m)	(kN*m)		
BMP-1	22,1	23,2	8,27	9,17	1.190	1,10
BMP-2	31,7	26,0	8,92	9,37	1.220	1,05
BMP-3	37,8	27,5	9,23	12,98	1.230	1,40
BMP-4	37,6	27,5	9,21	12,57	1.636	1,36
BMP-5	39,3	27,9	9,28	12,89	1.678	1,38
BMP-6	21,3	98,7	72,98	103,16	4.632	1,41
BMP-7	30,8	112,0	87,12	112,52	5.052	1,29
BMN-1	22,8	51,5	4,96	8,47	1.102	1,70
BMN-2	35,6	40,7	7.45	10,70	1.520	1,43
BMN-3	35,6	40,7	7.45	10,59	1.504	1,42

Tabela 5.18 - Resultado dos momentos para a segunda situação.

Com a utilização do F_{ck} e do F_y reais no cálculo teórico, a diferença entre o valor do momento resistente medido e o do momento resistente previsto diminuiu, implicando em valores de ρ (Tabela 5.18) mais reais. Assim, é possível obter algumas conclusões:

- a influência dos séptos fica visível, pois em todos os testes BMPs os valores de ρ são maiores que 1;
- a influência dos séptos nos terços do vão também fica visível se compararmos os testes BMP-1, BMP-2, BMP-4 e BMP-5. A única diferença entre esses testes é que os testes BMP-4 e BMP-5 possuíam séptos nos terços do vão, obtendo um maior momento de resistência;
- para os testes BMP-6 e BMP-7 fica visível também a influência positiva dos séptos;
- para os testes BMN-2 e BMN-3 de pequenos vãos, não houve necessidade do uso de séptos. Contudo, o parâmetro ρ significa que houve uma queda no momento resistente, se compararmos com ρ do teste BMN-1 (Tabela 5.18);
- com relação ao parâmetro ρ, também é possível concluir que o F_{ck} e o tamanho do vão pouco influenciaram na relação momento resistente medido/momento resistente previsto. Por exemplo, os testes BMP-1 e BMP-2 apresentaram praticamente o mesmo ρ; no entanto, o F_{ck} do

BMP–2 é quase o dobro do valor do F_{ck} do BMP–1. O vão no teste BMP– 4 é 1,8 vezes maior que o vão do BMP–3, apesar de ambos possuírem o mesmo ρ . Assim, novamente ficou clara a influência dos séptos nos testes.

Na Tabela 5.19 são mostrados todos os momentos resistentes de cada teste para a terceira situação (Seção 5.2.1), na qual foram adotados os seguintes valores: F_{ck} , que variava para cada tipo de laje: $F_y = 333,2$ Mpa; $\phi = 1,0$ e $\phi_c = 1,0$. Esta tabela também apresenta os momentos medidos nos testes.

Teste	F _{ck}	LN	Momento	Momento	Carga de	ρ
	(MPa)	(mm)	Previsto	Medido	serviço	
			(kN*m)	(kN*m)	medida	
					(kg / m²)	
BMP-1	22,1	40,5	10,0	9,17	1.190	0,91
BMP-2	31,7	46,9	10,48	9,37	1.220	0,89
BMP-3	37,8	49,7	10,99	12,94	1.230	1,17
BMP-4	37,6	49,6	10,98	12,57	1.636	1,14
BMP-5	39,3	50,3	11,05	12,89	1.678	1,16
BMP-6	21,3	107,5	92,16	103,16	4.632	1,11
BMP–7	30,8	114,5	110,71	112,52	5.052	1,01
BMN-1	22,8	70,5	5,73	8,47	1.102	1,48
BMN-2	35,6	65,7	8,27	10,70	1.520	1,29
BMN-3	35,6	65,7	8,27	10,59	1.504	1,28

Tabela 5.19 – Resultado dos momentos para a terceira situação.

Analisando a Tabela 5.19, foi possível chegar às mesmas conclusões obtidas pela análise da Tabela 5.18. Contudo, é bom lembrar que os cálculos não levaram em conta os coeficientes de resistências (ϕ = 0,9, ϕ_c = 0,6).

Nota-se que BMP-1 e BMP-2 foram os únicos resultados que apresentaram $\rho < 1$, ou seja, a resistência medida foi menor que a resistência prevista, possivelmente devido a ausência de séptos nestes protótipos.

A Tabela 5.20 apresenta uma comparação entre a carga última e a carga de serviço para cada laje.

Teste	F _{ck}	Carga Última	Carga de Serviço	χ
	(MPa)	(kg / m²)	(kg / m²)	
BMP-1	22,1	1.190	369	3,22
BMP-2	31,7	1.220	392	3,11
BMP-3	37,8	1.230	707	1,74
BMP-4	37,6	1.636	398	4,11
BMP-5	39,3	1.678	402	4,17
BMP-6	21,3	4.632	2318	2,00
BMP-7	30,8	5.052	2851	1,80
BMN-1	22,8	1.102	371	2,97
BMN-2	35,6	1.520	1.456	1,04
BMN-3	35,6	1.504	1.441	1,04

Tabela 5.20 – Comparação entre carga última e carga de serviço.

O valor do parâmetro χ é a relação entre a carga última e a carga de serviço.

Pela Tabela 5.20 foi possível notar que em todas as lajes mistas as cargas de serviço foram inferiores às cargas últimas. Em relação a isso, foi possível perceber que:

- a influência dos séptos nos terços do vão também fica visível se compararmos os testes BMP-1, BMP-2, BMP-4 e BMP-5. A única diferença entre esses testes é que os testes BMP-4 e BMP-5 possuíam séptos nos terços do vão, suportando assim uma carga maior;
- para os testes BMP–6 e BMP–7 fica visível também a influência positiva dos séptos;
- para os testes BMN-2 e BMN-3 de pequenos vão não houve necessidade do uso de séptos. Contudo, o parâmetro χ significa que houve uma queda na carga que a laje suportaria a mais, se compararmos com χ do teste de BMN-1 (Tabela 5.20).

Assim, novamente ficou clara a influência dos séptos nos testes.

5.3 Cálculo das Flechas das Lajes Mistas

As análises das flechas foram feitas através de comparações entre cálculos teóricos e os valores medidos no laboratório. Deve-se ressaltar que as flechas que serão apresentadas são flechas calculadas e medidas no centro do vão de cada laje mista testada.

Duas situações foram analisadas para o cálculo das flechas das lajes mistas:

- na primeira situação adotamos uma carga de serviço (Q) de 300 kg/m²;
- na segunda situação adotamos uma carga de serviço (Q) de 1.000 kg/m².

Para se fazer o cálculo das flechas, foi utilizado a laje BMP-1 como exemplo. Os seguintes dados foram utilizados nos cálculos:

b = 200 mm; Q = 300 Kg/m²; L = 4,8 m; I = 1,6 m; $F_a = 2,16$ kN; $E_a = 198.863,40$ MPa; $I_{sm} = 1.343.395,98$ mm⁴.

em que:

b - largura efetiva da laje;

L - comprimento do vão;

I – comprimento dado por $\frac{v\tilde{a}o}{3}$;

E_a – módulo de elasticidade do aço;

I_{sm} – momento de inércia da seção mista;

F_a – força aplicada.

Primeiramente, é necessário fazer o cálculo da carga distribuída (*q*) na laje mista (Equação 5.6).

$$q = b * Q \tag{5.6}$$
$$q = 0.6 \ kN \ / m$$

O cálculo do momento (M) de uma laje para uma carga distribuída é dado pela Equação 5.7.

$$M = \frac{q^*L^2}{8}$$

$$M = 1.728 \ kN \times m$$
(5.7)

Nos testes a carga foi distribuída em dois pontos (nos terços). Assim, o momento obtido pode ser dado pela Equação 5.8.

$$M = \frac{p}{2} * l \tag{5.8}$$

Para se obter a carga P, foi necessário igualar os dois momentos.

$$1,728 = 0,8 * P$$

 $P = 2,16 kN$

_

Com o valor da carga foi possível saber a flecha (Δ) correspondente. Esta flecha foi retirada a partir dos dados do teste da laje BMP-1.

 $\Delta = 20,41 \text{ mm}$

Com a mesma carga calculada pelas Equações 5.7 e 5.8, foi possível fazer o cálculo da flecha através da Equação 5.9.

Flecha Prevista:

$$\Delta = \frac{F^*l}{48^*E^*I} \left(3^*L^2 - 4^*l^2\right)$$

$$\Delta = 22,76 \text{ mm}$$
(5.9)

As Tabelas 5.21 e 5.22 apresentam as flechas calculadas para todos os testes considerando a carga de serviço de 300 e 1.000 kg/m², respectivamente. Na Tabela 5.22 são apresentadas as flechas somente para os testes de momentos positivos, pois não é aplicada uma carga de serviço de 1.000 kg/m² para uma laje de momento negativo.

Teste	Flecha Prevista	Flecha Medida
	(mm)	(mm)
BMP–1	22,76	20,41
BMP–2	20,75	20,76
BMP-3	0,56	0,24
BMP-4	19,84	17,83
BMP-5	19,59	17,52
BMP–6	4,61	4,30
BMP–7	4,18	1,39
BMN–1	22,58	21,39
BMN-2	0,25	0,2
BMN-3	0,25	0,17

Tabela 5.21 – Flechas calculadas para uma carga de serviço de 300 kg/m².

Teste	Flecha Prevista	Flecha Medida
	(mm)	(mm)
BMP-1	75,89	77,44
BMP–2	69,17	78,56
BMP–3	1,90	1,13
BMP-4	66,14	63,26
BMP-5	65,32	65,26
BMP–6	15,38	10,26
BMP–7	13,96	5,16

Tabela 5.22 – Flechas calculadas para uma carga de serviço de 1.000 kg/m².

Figura 5.7 – Gráfico de Carga x Deslocamento das lajes mistas BMP-1 – BMP-5.

A Figura 5.7 apresenta uma comparação entre as lajes mistas BMP–1, BMP–2, BMP–4 e BMP–5. Todas as lajes tinham as mesmas dimensões. As diferenças estavam nos F_{ck} 's e nas quantidades e posições dos séptos.

As lajes BMP–1 e BMP–2 possuíam somente séptos nas extremidades e as lajes BMP–4 e BMP–5 possuíam séptos nas extremidades e nos terços. Para que fosse possível fazer uma análise das flechas das lajes mistas, foi adotada uma carga para a medida do deslocamento. A Tabela 5.23 apresenta as flechas medidas de acordo com a carga fixada paras as lajes em estudo.

Teste	Carga	Flecha
	(kN)	(mm)
BMP-1	9,5	125,79
BMP-2	9,5	120,79
BMP-4	9,5	87,62
BMP-5	9,5	90,29

Tabela 5.23 – Flechas medidas para uma carga de 9,5 kN.

Com esses dados foi possível observar que os deslocamentos nas lajes BMP-4 e BMP-5 foram menores que nas lajes BMP-1 e BMP-2. Essa redução se deu pelo fato das lajes BMP-4 e BMP-5 terem séptos nas extremidades e nos terços do vão. É possível concluir então que os séptos reduziram as flechas em torno de 30 %. Assim, os BMPs que utilizaram séptos nas extremidades e nos terços do vão suportaram uma maior carga e tiveram flechas reduzidas.